Wir müssen den Bremsweg eines Zuges berechnen, der mit einer konstanten Verzögerung von $-2 \text{m/s}^2$ bis zum Stillstand bremst. Die Anfangsgeschwindigkeit beträgt $72 \text{km/h}$. Zuerst müssen wir die Anfangsgeschwindigkeit in die Einheit $\text{m/s}$ umrechnen. Dann nutzen wir die Formel für den Bremsweg bei gleichmäßiger Verzögerung.
Wir müssen den Bremsweg eines Zuges berechnen, der mit einer konstanten Verzögerung von $-2 \text{m/s}^2$ bis zum Stillstand bremst. Die Anfangsgeschwindigkeit beträgt $72 \text{km/h}$. Zuerst müssen wir die Anfangsgeschwindigkeit in die Einheit $\text{m/s}$ umrechnen. Dann nutzen wir die Formel für den Bremsweg bei gleichmäßiger Verzögerung.
Im Vollzugang erwarten dich alle Lösungsschritte für alle Ham-Nat-Altfragen, zusammengestellt von Expert*Innen und sorgfältig kuratiert, um dir beim Erreichen deiner Ziele zu helfen.
Umrechnung der Geschwindigkeit: Die Geschwindigkeit von 72 km/h wird zu m/s umgerechnet. Dabei ist $72 km/h = 72 * (1/3.6) m/s = 20 m/s$.
Formel für den Bremsweg: Wir verwenden die Formel $s = v^2 / (2a)$, wobei $v$ die Anfangsgeschwindigkeit und $a$ die Verzögerung ist. Einsetzen der Werte ergibt $s = 20^2 / (2*2) = 400 / 4 = 100 m$.
Die Formel $s = \frac{v^2}{2a}$ kommt von der Kombination zweier Grundformeln der Bewegung: